Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

نویسندگان

  • S. E. Parker
  • J. J. Kohut
  • Y. Chen
  • Z. Lin
  • F. L. Hinton
  • W. W. Lee
چکیده

Abstract. It is found in collisionless Electron Temperature Gradient (ETG) turbulence simulations that, while zonal flows are weak at early times, the zonal flows continue to grow algebraically (proportional to time). These fine-scale zonal flows have a radial wave number such that krρi > 1 and krρe < 1. Eventually, the zonal flows grow to a level that suppresses the turbulence due to ExB shearing. The final electron energy flux is found to be relatively low. These conclusions are based on particle convergence studies with adiabatic ion electrostatic flux-tube gyrokinetic δ f particle simulations run for long times. The Rosenbluth-Hinton random walk mechanism is given as an explanation for the long time build up of the zonal flow in ETG turbulence and it is shown that the generation is (k⊥ρe) 2 smaller than for isomorphic Ion Temperature Gradient (ITG) problem. This mechanism for zonal flow generation here is different than the modulational instability mechanism for ITG turbulence. These results are important because previous results indicated zonal flows were unimportant for ETG turbulence. Weak collisional damping of the zonal flow is also shown to be a n important effect.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

5 M ar 2 00 7 Excitation of zonal flow by the modulational instability in electron temperature gradient driven turbulence February 2 , 2008

The generation of large-scale zonal flows by small-scale electrostatic drift waves in electron temperature gradient(ETG) driven turbulence model is considered. The generation mechanism is based on the modulational instability of a finite amplitude monochromatic drift wave. The threshold and growth rate of the instability as well as the optimal spatial scale of zonal flow are obtained.

متن کامل

ar X iv : p hy si cs / 0 70 30 50 v 1 5 M ar 2 00 7 Excitation of zonal flow by the modulational instability in electron temperature gradient driven turbulence March 6 , 2007

The generation of large-scale zonal flows by small-scale electrostatic drift waves in electron temperature gradient(ETG) driven turbulence model is considered. The generation mechanism is based on the modulational instability of a finite amplitude monochromatic drift wave. The threshold and growth rate of the instability as well as the optimal spatial scale of zonal flow are obtained.

متن کامل

Quasilinear analysis of the zonal flow back - reaction on ion - temperature - gradient mode tur - bulence

There is strong evidence in favor for zonal flow suppression of the Ion-Temperature-Gradient (ITG) mode turbulence, specifically close to the linear stability threshold. The present letter attempts to analytically calculate the effects of zonal flow suppression of the ITG turbulence through deriving a modified dispersion relation including the back-reaction of the zonal flows on the ITG turbule...

متن کامل

Global Gyrokinetic Simulation of Electron Temperature Gradient Turbulence and Transport in NSTX Plasmas

Global, nonlinear gyrokinetic simulations of electron temperature gradient (ETG) driven turbulence were carried out with the GTS code using actual experimental parameters of NSTX discharges. Our simulations reveal remarkable new features with regard to nonlinear spectral dynamics in 2D perpendicular wavenumber space. Specifically, there exists direct, strong energy coupling between high-k ETG m...

متن کامل

Gyrokinetic �f particle simulation of trapped electron mode driven turbulence

The linear instabilities and nonlinear transport driven by collisionless trapped electron modes �CTEM� are systematically investigated using three-dimensional gyrokinetic �f particle-in-cell simulations. Scalings with local plasma parameters are presented. Simulation results are compared with previous simulations and theoretical predictions. The magnetic shear is found to be linearly stabilizin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006